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STRUCTURAL RESPONSE TO DISCRETE AND CONTINUOUS GUSTS OF AN AIRPLANE
HAVING WING BENDING FLEXIBILITY AND A CORRELATION

OF CALCULATED AND FLIGHT RESULT;] I

By JoHN C. HOt'BOLT and ELDON E. KORD_ZS

SUMMARY

An analysis is made of the structural response to gusts of

an airplane hating the degrees of freedom of certical motion

and wing bending flexibility and basic parameters are estab-

lished. A conrenient and accurate numerical solution of the

response equ_tio'ns is deceloped .for the case of discrete-gust
encounter, an exact solution is made for the simpler case of

continuous-sinusoidal-gust encounter, and the procedure is

outlined for treating the more realistic conditi,m of continuous

random atmospheric turbulence, based on the methods of

generalized harmonic analysis.

Correlation studies between flight and calculated results are

then gicen to ecaluate the influence of wing bending flexibility

on the structural response to gusts o.f two twin-engine transports

and one four-engine bomber." It is shown that calculated

results obtained by means of a discrete-gust approach reeeal the

general nature of the flexibility effects and lead to q_utlitative

correlation with flight results. In contrast, calculations by

means of the continuous-turbulence approach show good

quantitatice correlation with flight results and indicate a much

greater degree _f resolution _ the flexibility effects.

INTRODUCTION

In the design of aircraft the condition of gust encounter has
become critical in more and more instances, mainly because

of increased flight speeds and because of configuration

changes. Aircraft designers have therefore placed greater

emphasis on obtaining more nearly applicable methods for

predicting the stresses that develop. ,ks a result, the number

of papers on this subject has significantly increase([. (See,

for example, refs. I to 16.) .Many of the papers have treated

the airplane as a rigid body and in so doing have dealt with

either the degree of freedom of vertical motion alone (refs.

I to 4) or with the degrees of freedom of vertical motion and

pitch (refs. 3, 5, and 6). In the main, these rigid-body

treatments tacitl.v involve the concept of "discrete," "iso-

late(l" gusts, but more recently steps have been taken to

treat the more realistic condition of (.ontinuous-turbulence

encounter in an explicit manner (see refs. 6 to 9).

In addition to rigid-body effects, one of the more impor-

tant items that has been of concern in the consideration of

gust penetration is tiw infhwm'e tilatwing fh, xibilit.v has on

sll'u_tllra[ resl)o[lse. This ('OllCerll has Iwo nlaill aspects:

(1) that including wing flexibility may lead to the calculation

of higher stresses than wouhl be obtained by rigid-body treat-

ment of the problem and (2) that wing flexibility may intro-

duce some error when an airplane is used as an instrument for

measuring gust intensity. Thus, several papers have also

appeared which treat the airplane as a flexible body. In

most of these papers the approach used involves the tlevelop-

ment of the structural response in terms of the natural modes

of vibration of the airplane (refs. 10 to 15). In othex.,s the

approach is more unusual, as, for example, reference 16 which

deals with the simultaneous treatment of the conditions of

equilibrium between aerodynamic forces and structural de-

formation at a number of points along the wing span. What-

ever the approach, however, these flexible-body analyses have

two main shortcomings. They too have adhered to the con-

cept of simple-gust or discrete-gust encounter (ref. 10 is an

exception) and also they are not very well suited for making

trend studies without excessive computation time.

The intent of the present report is to she([ further light

upon the case of gust penetration of an airplane having the

degrees of free(loin of vertical motion anti wing ben(ling. It

has several objectives: (1) to establish some of the basic pa-

rameters that are involved when wing bending flexibility is

included, (2) to develop a method of solution which is fairly

well suited for trend studies without excessive computation

time, (3) to evolve methotls for treating continuous turt)u-

lence as well as dis('rete gusts, and (4) to show tim degree of
correlation that can be obtained between flight-test and an-

alytical results and, through this correlation, to assess how

well flexibility effects may be analyzed. In effect, this report

is a composite of the discrete-gust studies made jointly by

the authors in references I I and 12 and of the contintlous-

turbulence studies made by the fit_t atnthor in reference 1()

and in nnpublished form.

The report is developed as follows: The equations fi)r re-

sponse (inchn,ling accelerations, displacements, and ben,ling

moments) are derived and the basic parameter.'s outlined. A

simple solution of these equations follows for both discrete-

gust encounter and for continuous-sinusoidaL-gust encounter.
Next, the pro('edure for treating continuous atmospheric tur-

huleuce is outlined. Then, the correlation studies involving

a comparison of llight-test results with the calculated results
ohtained for both discrete-gust and contimtous-turl)ulen(.e

conditions are -iven.
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SYMBOLS

slope of lift curve

deflection coefficient for nth mode, function of
time alone

aspect ratio of wing

span of wing
chord of wing ::'_-

chord of wing midspan

see equation (23b)

Young's modulus of elasticity

nondimensional gust force, (s- e) d¢

external applied load per unit span

acceleration due to gravity
distance to gust peak, chords

bending moment of inertia

reduced frequency, _-_.

nondimensional bending-moment factor

(34,=K_ 2 ,VUXf_o)

wave length
aerodynamic lift per unit span of wing due to

gust
aerodynamic lift per unit span of wing due to

vertical motion of airplane

mass per unit span of wing

net incremental bending moment at wing
station j
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¢t

['b12

-1L =J_i cw.(y--y_)dy

/_b/2

31,,, _ Jy t mw,,(y--y_)dy

generalized mass of nth mode

incremental number of g acceleration

see equation (58a)

load intensity per unit spanwise length

see equations (I8), (24), and (13)

distance traveled, 2V t, half-chords
Co

wing area
time

frequency-response function

vertical velocity of gust or random disturbance

maximum vertical velocity of gust

forward velocity of flight

total weight'of airplane

deflection of elastic axis of wing, positive

upward

w. deflection of elastic axis in nth mode, given in

terms of unit tip deflection

y distance along wing measured from airplane

center line

7/,

Id, I
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1--¢,

Subscripts:
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Notation:
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V

response coefficient based on a., _c0 a

second derivative of z0 with respect to s

second derivative of zt with respect to s
absolute value of center-line deflection of

• fundamental mode in terms of unit tip

displacement

distance interval, half-chords; also, strain

nondimensional bending-moment parameter,

8M..

apcoM, o

_ICO

reduced-frequency parameter, ff_

nondimensional relative-density parameter,
8M.

a_oS

mass density of air
standard deviation; also, distance traveled,

2V
-- r, half-chords
co

function wlfich denotes growth of lift on an

airfoil following a sudden change in angle of
attack (Wagner function)

power-spectral-density functions

function which denotes growth of lift on rigid

wing entering a sharp-edge gust (K0ssner

function)

circular frequency
natural circular frequency of vibration of n th

mode

fl=2_r _ 2k
frequency, -L-=_-=_.

experimental

flexible

fuselage

input
spanwise station
number of distance intervals traveled

natural modes of vibration
nodal

output
rigid
theoretical

column matrix when used in matrix equations

square matrix

Dots are used to denote derivatives with respect to time:

primes denote derivatives with respect to s or or; a bar above

a quantity denotes the time average; and vertical bars about

a quantity denote the modulus.



RESPONSE TO DISCRETE AND CONTINUOUS GUSTS OF AN AIRPLANE HAVING WIND-BENDING FLEXIBILITY

ANALYSIS OF RESPONSE TO ARBITRARY GUSTS

EOVA_ONSroa ST_UCTUaALamPONSE

The following analysis treats the problem of determining
the stresses that develop in an airplane flying through vertical
gusts on the assumption that the airplane is free to respond
only in vertical motion and wing bending. The case of the
transient response to arbitrary gusts is considered first.
A subsequent section is then devoted to the case of random
disturbances in which explicit consideration is given the
continuous nature of atmospheric turbulence.

Equations of motion.--It is convenient to treat the problem
simply as one of determining tile elastic and translational
response of a free-free elastic beam subject to arbitrary dy-
namic forces. For dynamic forces of intensity F per unit.
length, the differential equation for wing bending is, if struc-
tural damping is neglected,

_2 _. _ ....
_=-mwt_ O)

where w is the deflection of the elastic axis referred to a fixed

reference plane. The task of detelmMning the deflection that
results from the applied forces F may be handled conveniently
by expressing the deflection in terms of the natural free-free
vibrational modes of the wing.

The wing deflection is thus assumed to be given by the
equation

w----acwo+atwl +oaw2+ . . • (2)

where the a_'s are functions of time alone, and the w,'s
represent the deflections of the various modes along the
elastic axis of the wing, each being given in terms of a unit
tip deflection. In equation (2), w0 represents the rigid-body
mode and has a constant unit displacement over the span;
the other w's are elastic-body modes which satisfy the differ-
ential equation

and the orthogonality condition

n mw,,,w, dy=O (re#n) (4)
t'/2

=M, (m----n) (5)

In accordance with the Galerkin procedure for solving

differential equations, equation (2) is first snbstituted into
equation (l) to give, after use is made of equation (3),

a l_, 2mwt + a2ca22mw2+ ..... m (_owo+ fi,wl + • • .) + F

(6)

Now if this equation is multiplied through by w,, then is
integrated over the wing span, and u_ is made of equations

(4) and (5), the following basic equation results:

/-b/2
M.a. +o_.2M.a.= J__,, Fw.@ (7)

which allows for the solution of the coefficients a, if the

applied forces F are known. This equation applies for the
translational mode n=O, for which ease oJ0=0, as well as for
all the elastic-body modes. The quantity M, appearing in
the equation is commonly ealled the generalized mass of
the nth mode.

For the present ease of the airplane flying through a gust,
the force F is composed of two parts: a part designated by
L, due to the vertical motion of the airplane (including both

rigid-body and bending displacements) and a part L, resulting
directly from the gust (this latter part is the gust force which
would develop on the wing considered rigid and restrained
against vertical motion). On the basis of a strip type of
analysis, these two parts are defined as follows:

F=L.+ L,--'----2 ocV fo' _b [l--, (t--r)]dr+ a ocl" f'

where t----O is taken at the beginning of gust penetration.
l--¢(t) is a function (commonly referred to as the Wagner
function) which denotes the growth of lift on a wing following
a sudden change in angle of attack and for two-dimensional
incompressible flow is given by the approximation

[1--_b (t)la - ®= 1--0.165e-°'°_t--o.335e -°6_'t (9)

and _(t) is a function (commonly referred to as the Ktissner
function) which denotes the growth of lift on a rigid wing
penetrating a sharp-edge gust anti for two-dimensional
incompressible flow is given by the approximation

[_ (t)]a.,, = 1-- 0.Se-°_v'-- 0.Se -2v' it0)

Figure 1 is a plot of equations (9) anti (10).
An additional term which involves the apparent air mass

should be included in equation (8) ; this mass term is inertial
in character and may be included with the structural mass
(see ref. 16) althol,gh it is usually small in comparison. The
lift-curve slope a may be chosen so as to include approximate
overall corrections for aspect ratio and compressibility effo_'ts.

The remainder of the analysis is restricted to uniform
spanwise gusts and the assumption is nmde that the response
will be given with sufficient accuracy by considering only
two degrees of freedom: vertical motion anti fundamt, ntal
wing bending. On this basis, if w as given by the first two
terms in equation (2) is substituted into equation (S) anti
the resulting equation for F is substituted into equation (7 }.
the following two resl)onsc equations result when rt is set
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FI6L'nE 1 --Unstead.v-lift functions (see e(im (9) and (10)} where, for & sharp-edge gust. the gu._t force f(s'_ =6{.qL

equal to 0 and 1. respectively:

._,,o..],(.. f,a-_VS ao=- ao+-_ _i, [l-,t, (t-_-)] d_'+ u_ (t--,-) ,IT

and

2Mr
_i, a,= /io+_ _/,) [1-¢ (t-,')l dT_-

s,
Sj0

where (because of mode symmetry)

itlgl_

•_'--:23. c dy

St = 2 :)_/'2ew_ dy (1 3)

/,,0/2

S_=2J. cw,'_dy

Equations (11) an(l (12) mt_y be put in vonvenietlt non-

dimensional form by introdu('ing the notation

2V
8=--- t (14a)

or

21"
o'=--- r (141))

and

V
z"=l "c,,a, (1:5)

where c0 is the midspan chord of the wing and U is the maxi-
mum vertical velocity of the gust. With this notation.

equations (11) and (12) may be written

_;o"=--2 _.:o Izl l

alld

--')J" [1 --¢(._--allda4-
. ( " It-- . It,/_t "-I _ t "Jc #'IX2 -"I = /'l-O _-r2 -I )

l)

/'1 _"

Whl' I'l'

.q.ll, "t

8.11_

_t=am.o,, q

_1 (*l}

X=_3qI . I1_

S,

S,

1'2=

al|d tl,prin}(, tlt'no|t's a derivative with re:,;po('t ht a, l'_(lll,"t-

tions (16) aml (17) are the basiu vt,sponse e(lualiozis ill ttw

i)rl,soltl atmly.,*i_. The live I)aL'anteter_ alpl)t,_l, ring ill thest.

eqll,alil)Its altd given by eqllalions 11,',¢) (lel)t, nd upon th,,

forw.rd v(.ht(.ily. _lir donsity, lift-_'ul've slope, aml tit(, air-
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plane physical characteristics: the wing plan fotan, wing

bending stiffness, and wing mass distribution. Experience

has shown that variations in the physical characteristics

cause significant variations in the first three of the five

parameters, while the last two vary only to a minor extent•

Tlw first three are therefore file most basic parameters; uo is

a relative-density factor, frequently referred to as a mass

parameter, and is associated with vertical free-body motion

of the airplane; m, similar to u_, is the mass parameter

associated with tile fundamental mode; and X, by its nature,

may be interpreted as a reduced-frequency parameter similar

to that nsed in flutter analysis.

It is significant to note that. if any one of the three quan-

tities r0, h. and u appearing in equations (16) and (17) is

specified or known, the other two may be determined. Thus,

if the gust is known, the response may be determined or.

conversely, if either r0 or zt is known; the gust may be

determined. A useful equation relating -0 and z, may be

found by coml)ining equations (16) and (17) so as to eliminate

the integral dealing with the gust. The resuh is the equation

(,)j_' (:1"+left)+2 --'--rL :L"[t--q_(.s'--a)]da=#o'() '" (19)
rl ,1'1 0

which is used subsequently.

It may also be of interest to note that u_zo", in effect,

defines a frequently used acceleration ratio. From equa-

tions (15) and (14), the rigid-body component, of the vertical

acceleration may be written

4V_'
• " ---- ZO tt
ao-- co

or, when expressed in terms of the incremental number of 9's,

,an --ii-°=4VU zo"
t.I cog

An acceleration factor An, based on quasi-steady flow and

peak gust velocity is now introduced according to th(,
definition

• a l"
An,l| =_ pSV _ i_

The ratio _ is thus found to bc

AR

Whe|'c the gust shal)e is represented analytically and the

unsteady-lift functions arc taken in tilt, form given by equa-

tions (9) and (10), solution of the ,'esponsc equations may be

made by tile Laplace transform method, but such a solution

is more laborious than desired. Therefore, a numerical

procedure whMl permits a rather rapid sohltion of the

equations has been dovised for the case of discrete-gust

onvountt,r and is presented in a s|tbsequcnt section. It may

b,, wall to montion, however, tha! tlw rcsl)onse equations

arc svitabh, for solution by some of tit,, analog cn|Ullt,ting
mavhinos.

Bending stresses.-The I)cn<li||g moment -'in(I, hot|ee, th('

b(,mlin!z stresses tirol ,h,vvh)l) in tin, wing <Ira. to the gusl

may )w fr)tmd as f<)llows: The rigl|t-l|and sido of cqmttimt

OF AN AIRPLANE HAVING WIND-BENDING FLEXIBILITY 5

(1) ([efines the loading ou tilt, win,g; suppose that this Ioadin,_,

is (lenoted by p. then

p= -mfb+ l'"

By use of equations (2/ and (St and the notation of equa-

tions (141 and (15), this equation becomes

4Vl" ....... . .["p=--m - (.o +.t w_)--aoe_ (_ (zo"+z('w_)
CO ,J o

L+[ I -- _(._-- o)]do'+ a ocl u'¢,(.,.-- o-),/o-

wllere, as before, only tilt, first two deflection terms have

been retained. If the moment of tiffs loading is taken about

a given wing station, say !t. the following eqt|atio|l for

incremeutal ben(ling moment at that station will result,"

/" 1_/2

M_=J,, p(u-v,),#/

2=--4V-_" (.ll_,,zo" ++lI,.,z_")--aoI'l" (JL ,z,," +
¢o

."¢tzt")[l--¢h(._--_)]('o'+; p_'.'I%Ji+Pl'_(.'c--a),'a (210

where tim Jl's bearing double subsvripts are first moments
defined as follows:

"ll'"=J:;r_m(Y--!t')dY "l% =J:;/_c(y--y')d!/ } ,211
.II. =J:;/'_mw,(y--y_),l, +,Iq =J:;]'cu_t(!,--y,),/!/

a!ul Ill is tilt, station bcmg consi<lcred. Dividing equation
• a + +

(20) by tilt' quautlty _ pl f .lie o gives tile following eqtlation

whMi is considered to define a bendin.,..,-moment fat'tor K, ,it

wing station !tj

K+.= ._!1, _

oI'l ".IL,,

831.+. [ ,, M,., '+[ ..lI+, z,").... Zi 't --2+°+++,.0) J,,t: ++r+,,
tt _b(s--a)da I22"1

[ 1-- O(s--a)l,/a+ /-,-
o

a l'/
The factor ,_t) "+II,,) nnlv Ire rt,gar(h,<l as thc nlaxinlum

acrodynauli(, ht,n<litlg I)lolnt,nt that wot,hl l)(, (h,v(,h)l)v,l

by tilt, gust under (,on(litiorts of quasi-stca(ly flow and with

the wing consi(h, red rigid and restraine(I agaiust vertical

motion at the root. The bending-nmnlcnt ftu'tor /X's, nlav

thus he seeu to be tilt, ratio of the actual dynanfi<' bcn<lin,_,

tnonu,ut that o('t'ut.'s tt) this quasi=st(,ady h(,n(litvg monu, nt

a|l(l lhcr(,forc Inlty be rega|'<h,(l :is a response or' an alh, via t ion

fa('t<)r.

._. tllOl'(' <,on',,olti(,lll fOl'ln for 1111, |)('lldiltg-lti<)lllt'llt ftt<'t(ll'

ElY I)(' ohtain(,<l l)v ..)Ivin,... (,<lUaliotts <161 and (17)
)+

si)ntdtatwously f(w the (immtities| :,,"[i-o(.,+--,r)l,/<, and
,J (,
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results:

where
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zt"[1--d_(s--a)]d¢ and substituting these values into

With these operations the following equation

(23a)

Kj----

_ap1_TM_°2

=dzo" +ezl" + hX_zl

(23b)

(24)

d----_ g0 -- ,To
r! _ r2

rz -- ra

e_r 2 r------_2#_--_

8M, 0

8M, I

The derivation proceeds on the basis that the response

due to a given gust is to be determined. The airplane, just

before gust penetration, is considered to be in level flight

and, hence, has the initial conditions that the vertical dis-

_ement and vertical velocity are both zero. These con-

ditions mean that zo, z,, Zo', and zl' are all zero at s----0.

The gust force can be shown to start from zero and, therefore.
the additional initial conditions can be established that zo"

and z/' are also zero at s----0. By the numerical procedure.

solution for the response at successive values of s of incre-

ment _ will be made and, for the case being considered, it is

found advantageous to solve directly for the accelerations

rather than the displacements.

In order to make the presentation more compact, the

fol!owing notation is introduced:

It is seen that, when bending moments are being determined,

three additional basic parameters (eqs. (24)) appear. The

similarity of ,70and _t to go and ttt is to be noted; first moments

of masses and areas are involved rather than masses and

areas.

Reduction to rigid case.--It may be of interest to show the

reduction of the response equation to the case of the air-

plane considered as a rigid body. Thus, if zl is equated to
zero in equation (16), the following equation for rigid-body

response is obtained:

' zo, [l--V(s--¢)]d¢'4-fo -_q_(s--a)d¢ (25)

If z," is set equal to zero in equation (22) and use is made

of equation (25), the following equation for the bending-

moment parameter for the rigid-body case is obtained

K¢ =(pc-- _o)Z0, _ (26)

where zo," is the nondimensional acceleration of the airplane

considered as a rigid body.

8OLUTION OF RF_PONSE EQUATIONa

The case of discrete-gust encounter.--In this section a

rather simple numerical solution of the response equations

(16) and (17) is presented for the case where discrete gusts

are suddenly encountered. The procedure is readily adapted
to either manual or punch-card-machine calculations.

and

(27a)

_0 s _J//(s)= -_ _k(s--¢)da (27b)

With this notation, equation (l 6) would appear simply as

#oa=--2 y o' (a+rtB)O(s--a)daW/(s) (28)

In accordance with numerical-evaluation procedures, the

interval between 0 and s is divided into m equal stations of

interval tso thats=mt. The product of (a+r_) and O(s--a)

is assumed formed at each station and, with the use of the

trapezoidal method for determining areas, the unsteady-lift

integral in equation (28) may be written in terms of values

of a and _ at successive stations as follows, where the ruth

station corresponds to the value s:

in which 00, 0_.... are, respectively, the values of the

1--4, function at s----0, s=t .... (ao and & do not appear
because of the initial conditions). With this equation,

equation (28) may be written at various values of s or at
succe_ive values of m; the result, for example, for m=l is

_a, = -- _oal -- _rlOo_l + ft

and for m=2,

#oa_ = -- *(2Otat -t- Ooa_) -- ,r, (20_, -i- 0o/_) +f._

where f_ and f_ are the values of the g|,st-force integral a_
S=_ and #_2,t.
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The equations thus formed may be combined in the following matrix equation:

-_o+0o+

20,+ _+0o_

20.++ 201_

20,n_#

which may be abbreviated

uo+Oo_

20,__ 2_ _o + Ooe_

-rlOoE

2r,OiE rlOoE

2r,02_ 2r,O,_

al

tv 2

¢x 3

• +

rlOo_

2rtO__# 2r, O__:_

- _, i J,

7

(30a)

[AII-I+ [BII_I: I.f] (30b)

The simplicity of the matrices A and B, and all square matrices to follow, is to be noted; the matrices are triangular and

all elements in one column are merely the elements in the previous column moved down one row. Thus, only the elements

in the first columns have to be known to define completely the matrices.

Now instead of considering directly the second response equation, equation (17), it is expedient to consider equation

(19). According to the derivation presented in appendix A, the value of zt at s=m+ may be approximated in terms of the
past-history value of z/' by the following equation:

z, =e' [(m--1)/_,+ + 2,8,,,_ _+,B,,,_ t+6 _.] (31)

where Bt, /_, are the values of zt" at s=e, s=2e ..... If this equation is used to replace zt in equation

(19) and the unsteady-lift integral is manipulated similarly to the integral in equation (28), equations are obtained for suc-

cessive values of m which involve only the unknowns a and B. The results may be combined in the following matrix equation:

rlv' (1 +_"2)+(_--rt) 0#

X%_+ 2 (_--rt_ 0,.p..t
rt \rt /

#l 2 2 r2,+ )o.,_+,

I u, (l_X%2\_{r2 \

-- _- -1" --r, ) O#

\rt /

2 -- h2d+2 0:_
rt \rt / ?

=--"L Co+ 5%1+ 0 ,, • _

Ofl ¸ ,

0_2i

_3

--,u0

Ot m

(32a
which may be written

#t X2_: r2+ \+ r_+)

[Villi =_1_1 (:321,)

The square matrix [C] is seen to be similar to the other square matrices in that it is triangular with all the elements in

one column made up of the elements in the previous column moved down one row.

An equation in JBJ alone is obtained by substituting iai from this equation into equation (30) to yieht

IAl[q+I.l}lol=[-l,.,=,I1 +++>
which is the basic response equation relating B (that is, z/') to the gust force. This equation represents a system of

31;.i432 - _,5 +2
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linear simultaneous equations where the order of the matrix

is arbitrary; that is, the equations may be written up to any

desired value of s=mE. The solution for response can there-

fore be carried on as far as desired. Fortunately, the equa-

tions are of such a nature that simultaneous solution is not

required. As mentioned, each of the matrices [A], [B], and

[C] is triangular with all elements 0 above the main diagonal

and with all elements on the main diagonal of each matrix

equal; therefore, the main diagonal elements of [D] will also
all have the same value and the elements above this diagonal

will be 0. If each element on the main diagonal of [D] is

denoted by dl and [D,] is the matrix [D] with the main diagonal

elements replaced by O's, then

[D] = dz[/] + [D,]

With this equation, equation (33) may be written

l/t- tv,]181 (34)
Expanded, this equation has the form

81

&

83

d_
&

f|

A

A

A

A

_!
d,
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0

d2 0

d_ d2

81

&

&

8, (35)

8s

"0

d_ 0

d, d,

d, d_

ds d,

It can be seen that a step-by-step solution for the successive

values of $ may now be made; that is, 8, is solved for first,

then, with 8t established, & is solved for, and so on, as far as

is desired. With the value of 18] thus established, solution

for lal may now be made directly from equations (32).

Values of the displacements z0 and z_ may be obtained directly

from a and 8; zl may be obtained from equation (31); and

zo may be obtained from this same equation with $ replaced

by a.
Some mention should be made with regard to the selection

of the interval t. A rough guide to use in selecting t can be

obtained by considering X, which appears as tim characteristic

frequency in most response calculations. The period based

on this frequency would be T0= 7. Experience
has shown

that an interval in the neighborhood of 1/12 of this period

yields very good results (in general less than 1 percent error) ;

accordingly, a reasonable guide in choosing e would be the
1

equation _-_-_-_. Some convenient value near that given by

this equation should be satisfactory; in general, it will be

found that E may be 1 or greater.

The procedure thus outlined provides a rather rapid eval-

uation of the response due to a prescribed gust. With the

response thus evaluated, the bending moment at any value

of s or tim complete time history of bending moment may be

found by application of equations (23).

As a convenience in making calculations, a summary of

the procedure developed in this section has been made and

is given in appendix B. Curves of the value of the gust

force, equation (27b), are also given for three different types

of discrete gusts: sine gusts, sinC gusts, and triangular

gusts.
As a final word, it should be evident that, if response

values for either Zo" or z/' are known, the gust causing this

response can be found bv suitable manipulation of equations
(30) and (32). Thus, it Zo" is known, 8 in equations (30b)

and (32b) may be eliminated to give the equation

{ [AI +m[B][C]-' }lal = Ifi

Direct substitution of zo" in this equation allows ifl to be

determined. In most practical eases the second term in

equation (SOb) contributes only a small amount and may be

dropped with little resulting error in the gust force. The

equation for Ifl is then simply

[A] l,_l= lft

The case of continuous-sinusoidal-gust encounter.--Of

primary importance in making continuous-turbulence studies

is the response of the aircraft to a continuous sinusoidal gust.

A reduction of the response equations to this case is therefore

now made.

Where the gust is sinusoidal with frequency o_, the quan-

tities u, z0, and zL may all be taken proportional to e'k', where

_CO

_2--_, and it may be shown that equations (16) and (19)

reduce to (eq. (19) is chosen in place of eq. (17) purely for"

convenience)

goZo'=--2(zo'+r,z,')(F+i6_-4- U (P+iQ) (36)

.-- _t t • __ _Hm (z/'+VzO+2 (_--r,_., (F_ tG)--m,o ('37
rj \lh /

where F(k) and G(k) are the in-phase and out-of-plmse oscil-

latory lift coefficients used in flutter work and P(k) and t2(k!

are the similar in-phase and out-of-phase lift components on

a rigid wing subjected to a sinusoidal gust (see, for" examph,.

ref. 17).

Now let the gust velocity and the motion be represented

by tim real parts of

U = [,re _*")
f

Zo= Zoe'" _ (38)
|

z_= Z_e _')

where Z0 and Zt may be complex. With these equations

equations (36) and (37) become

OG _G
k +ir, • iQ

(139)

(40)



........... 7" _ ......

RESPONSE TO DISCRETE AND CONTINUOUS GUSTS OF AN AIRPLANE HAVING WIND-BENDING FLEXIBILITY

These equations yield

Zo-- (R4 -4-i&) (P + iQ)
- (41)

where

Z -RdP+iQ)
(42)

2G
R,------m- k

R3_kto

R ,,IV .\ jr2 \
,=7,

4,=R,R_-- S, S,--R2R3

(43)

52=RIS,+R,&--Ra&

in which Rs has been included because it appears later.

With Z0 and Z, established, the various response quantities
of interest may be determined. Those used frequently are
(1) the rigid-body component of acceleration z0", (2) the
acceleration at the fuselage center line

z"(O)=zo" + z,"wt(O)=zo" -_z,"

where _ is the absolute value of the fundamental-mode

deflection at the fuselage in terms of a unit tip amplitude, and
(3) the bending-moment factor Kj=dzo"+ez/'+hX2z,, see
equation (23a). In accordance with equations (38), these
quantities may be written as the real parts of

zo" = -- k_Zoe'k" ]

z"(O) = -- _ (Zo-- _Z,_ '*' [ (4 4)

With the use of equations (41) ant[ (42), these equations
become

zo" (R4+_S,) ( +_Q)e"'
At+ i_2

z"(0) = -- (R, + _R3+ i &) (P + iQ) e ,,,,
- a, q2i/_2 (45)

Kj =-- d (R _+ itS,) (P ÷ iQ)e,,,
A1-4iA._

9

The squares of the amplitudes follow directly from these
equations and are listed below since they play a primary role
in many applications

R _+S _(P'+
, _'zo"_'--( , ,...., Q2) (46)

&2+A2¢

]z"(_)[ 2- [(R,+6Ra)2+ 821 (p,+ Qz) (47)
_t2+.522

IK,12 °g(R/+S/)(P2+Q _)- at2+a2 2 (48)

It is worthwhile at this point to mention that a good approx-
imation exists for the quantity p2q_Q2 which appears in all
three equations. This quantity reflects the force on the
airplane due directly to the sinusoidal gust and for two-

dimensional incompressible flow is approximated with good
accuracy by the expression (see ref. 8)

1
p2+ Q2= 1+2rk (49)

Two other quantities which are used frequently in appli-
cations are now presented. These two quantities are the
acceleration and bending-moment factor that apply when
the airplane is considered as a rigid body, that is, when it is
considered to have only the degree of freedom of vertical
motion. The equation for rigid-body response can be
obtained directly from equation (39) by setting Z,=O.
With the aid of the resulting equation it may be shown that
the square of the amplitude of the rigid-body acceleration is

7 . 2__ p2+Q2
I_o, t--/ 2_-_-, I2F'J (50)

(,'+-v) +kT)
Through use of equation (26), the rigid-body bending-
moment factor may be written

IK,,l'=_-,0)']z0/] _ (51)

As a closing remark to this section, it may he said that the
computation of the response to a continuous sinusoidal gust
is actually quite an easy task, the amount of work involved
being very small in comparison with that involved in a
discrete-gust calculation. All that is necessary is to evaluate
the response quantity of interest, equations (46) to (48),
through means of tile coefficients given by equations (43),
with k taken equal to the reduced frequency of the sinusoidal
gust under consideration. Because the computation is so
straightforward, no summary is given as in appendix ]3 for
the case of discrete-gust encounter.

EXAMPLE

In order to provide an illustration and give an idea of the
accuracy of the present analysis, the response to a sharp-
edge gust of the two-engine-airplane example considered in
reference 16 was determined. The weight distribution over
the semispan, the wing-chord distribution, and the fimda-
mental bending mode are shown in figures 2, 3, and 4. The
frequency and deflection of the hmdamental mode were
calculated by the method given ill refi,rencc 18. The solu-

tion is made for a forward velocity of 210 mph and a gust
velocity of 10 ft/sec.
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The lift-curve slope used in reference 16 was 5.41; to be

consistent, the same value was used herein. Furthermore,

the unsteady-lift function used for a change in angle of attack
in the example presented in reference 16 was given by the

equation
(1-- qb)a= 6----1--0.361e-°'381s

rather than by equation (9). Thus, this equation was also

used herein. The gust unsteady-lift function used was that

given by equation (10).
The various physical constants and the basic response and

bending-moment parameters are given in table 1 ; the values

Fusek_qe
I0,140 Ib

Slructurol we_qht 2,380 lb
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Flouaz 2.--Semispan weight distribution for the two-engine airplane
of example.
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F_c;vaz 3.--Wing chord distribution for airplane of example.
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of the unsteady-lift function and the values of the gust force

are listed in table 2. The matrices [A], [B], and [C] used

in the solution are given in table 3.

The solution for response is shown in figure 5 (a) where the

deflection coefficients a0 and a_ in inches are plotted against

distance traveled in half-chords. The corresponding deflec-

tion quantities for the example given in reference 16 were

determined and, for comparison, are also shown in the figure.

A similar comparison is made in figure 5 (b) for bending

stresses at the fuselage and engine stations, stations 0 and 1

from reference 16. The agreement is seen to be good.

TABLE 1.--PHYSICAL CHARACTERISTICS OF AIRPLANE
USED IN EXAMPLE

W, Ib ............................................................................... 37. 450

8, lgl It ............................................................................. _7o
b, in ................................................................................ 1120

154
C_*,iD ................................................................
,,, s,up/_ r ......................................................... 2:222::::::22:: o.uo_3_
V, ft/_e ............................................................................ 3o_

U, ft/sec ............................................................................ l0

{see ................................................................................ 0, 02_J_half-chords ........................................................................ 1. o
5.41

a ................................................................................... 64. l_

................................................................................... 0 _,¢d4h

_l ................................................................................. 0. 4353
O. 218l

rZ .............................................................................. _. 0. 13._

r! ............................................................................... O. 4.52Jfu_lage station ..................................................................
rz (engine station ..................................................................... .547

_.Jfuaelage station .................................................................. 23. 49
_engine station .................................................................... 10. 19

ffuaelage station .................................................................. 3 e_.s
_engine station ................................................................... 3.391

*z . .ffu_elage station ............................................................ 0. 005;17
T ' m-'tengine station .............................................................. 0. _X_

"z here denotes dlsnmee from neutral axis to extreme fiber.

TABLE 2.-- 1--4, ORDINATES AND GUST-FORCE ORDINATES
FOR SHARP-EDGE GUST, _----1.0

m #. or (1 -- _,) A_ f or _.

0.63_ 0• 7534 .377

2 , g]15 . .M7
3 .8849 . ¢,.35

4 .9214 ._92

.946;t . *-3;';,1_33 .771

.9749 .7_• t_29 .821
9 _ ,845

TABLE 3.--MATRICES USED IN EXAMPLE

64. 799
lloa_

[ 1.7_18 1.50_I. _10

I I. S428 I. 7_

/ I.Sg"_ LS42_
t, 9"2_
1.9498 1.89261.9_

1.9_8
L I. 1, 91_197_ 1. 9658

.t *Iatrix

L_ O4.799

1, P_30 1.5068 64.799
1, 76t_g l. 6&_l 1.54}68 64,799
1. 8428 1. 7698 1. _t.30 1..5¢J_8 64. 799

I.892_ I,8428 I.7fl9_ I.8630 1.5068 64. 799
1. _ I. 80"28 1. 8428 1. 7898 1. fl_lO 1, ._ 64. 799
1.94_ 1.9"_ I.89"_ I._42_ L 760_i 1. _1 1. 5068 _i4.79_

r 4. 53_7 1

i. 3954 4. ,._..._7

2. 2445 1.39,54 4..__7

:1. I)7",]5 2. 2445 1.39,54 4. ,53_i73. s,_'d 3.07:15 2, Ti45 1.39.54 4. _7

4, #;949 3, _0q; 3.11735 2, 2445 ]. 3!154 4. 5:11i7
5. 4947 4. _i949 3. _9 3. 0735 2. 2445 1.3_J54 4.5:_;7
6. k_J00 5, 4947 4, 6949 3. _,_9 3. i)735 2. 2445 1. 3954 4, 5:_17

L T. (1_24 6. 2_._III 5. 4947 4. #;949 3. _869 3. (1735 '2. 2445 3954 4. _3_;7

]

7. _7 L:_ 7.0_i24 6. _-_J00 5. 4_._7 4. 6949 3. ,_.9 3. 0735 212445 I :t9,_,4 4.5:P,7

I O. 1394 1

._ 0.1394
,3627 .3_6 0.1394
.3860 .3627 . ,3_ O. 1394

.4019 .38_ .3_27 .32_ 0.1394
.4128 .4019 ,_ .3_27 .328B 0.1394
.4202 .41_1 .4019 .38_) ,3_27 .32_6 0.1394

.4252 .4202 .412_ .4019 . ._4_0 3627, .328_ 0.1394

.4287 ,42.52 .421_ .412S .4019 i .'_iO .3_t27 .32_B 0. 1394

• 431l ,4287 .4252 .4202 .412_ .4019 .3_i0 .3627 .32_'_ O, 13_/4

C .Matrix

H Matrix
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$. holt-chords

(a) Displacements,
(b) Stresses.

}'ZGURV 5.--Resporlsc of example airplane to a 10-ft/sec sharl)-_:dgr gust. 1"=210 mph.
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REMARKS ON ANALYSIS

Although the unsteady-lift functions for two-dimensional

unsteady flow are presented, the method is general enough

so that the unsteady-lift functions for finite aspect ratio, for

subsonic compressible flow, and for supersonic flow may be

used as well. (See refs. 3 and 17 to 22.)

Since the numerical method for the case of discrete-gust

encounter is based on an integration procedure, it possesses

the desirable feature that a fairly large time interval may

be used and good accuracy still be obtained. As an accuracy

test, solutions of equations (16) and (17) were made for

several cases by the exact Laplace transform method as

well as by the numerical process, in which process the time

interval was selected according to the rule of thumb sug-

gested. When the results were plotted to three figures,

the difference between the two solutions was barely

discernible.

Additional bending modes could be included in the

analysis but this refinement is really not warranted. Some

calculations made with additional modes gave results which

differed only slightly from the results obtained when only

the fundamental mode was used. The good agreement of

results obtained for the example with the results obtained

by the more precise method given in reference 16 also

illustrates this point. Furthermore, if additional degrees

of freedom are to be used, it would appear more important

to extend the analysis to include wing torsion and airplane

pitch and, also, to include the case of nonuniform spanwiss

gusts. Torsion undoubtedly becomes important for speeds

near the flutter speed, and pitch would appear important

for cases where low damping in pitch is present. This latter

point has been borne out by some investigations which show
that there is a marked increase in gust loads as the damping

in pitch is decreased. However, it is the intent of this

analysis to treat the effects of wing bending flexibility and

it should be sufficiently satisfactory for speeds at least up

to the cruising speeds and for airplanes having good longi-

tudinal damping characteristics.

TREATMENT OF RANDOM CONTINUOUS TURBULENCE

The approach given in the previous section works well

for gusts which are either isolated or which are of a con-

tinuous-sinusoidal type. It also works for gusts which are

of a random-continuous nature, such as exist in the atmos-

phere. For this case, however, the approach is not very

practical, first because it is questionable whether an appro-

priate or representative time history of atmospheric gust

sequence could be established, and second because for any

long gust sequence tile amount of computational work

involved is prohibitively large. It is therefore desirable to

turn to other means for treating realistic turbulence condi-

tions, with the view of having a technique that has general

applicability and is mathematically tractable.
One such procedure which suggests itself for treating the

case of random continuous turbulen('c and whiclL is at present

receiving much attention makes use of the concepts and

techniques of generalized harmonic analysis (see, for example,

refs. 6 to 10). T]wst, methods permit the description of the

random-atmospheric-turbl,h'ncc distm-ban['c and the associ-

ated airplane response in analytic form by means of the

REPORT I I8I--NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

so-called "power-spectral-density function." A brief revit,w

of the technique is considered pertinent. If u(t) represents

a random disturbance or a system response quantity to tiffs
disturbance (such as the atmospheric vertical velocity and

resulting structural response considered herein), then the

power-spectral-density function _(_) is defined as

1 f_" .,dt! 2<I,(_) = lim u(t)e-' (52)

where to is frequency in radians per second, and tlw bars

the modulus of the complex quantity I' uft)e .... ,H,designate
$

which is known as the Fourier transform of u(t) An

equivalent and more useful expression for ,l,(o_) can bt,
derived and is

¢(_)_ 2 fo'*R(r) cos tot dr (53)

where R(r) is the autocorrelation fl, nction defined by

R(r)= lim uq)u(t÷ r) ,lt _54t

A useful property of 4,(to) is that

o" 4'(_) dto= Mean square = u_ =R(0) = ¢r2 (.55_

The quantity u2(t)----_,or a2, the time mean square, provides

a measure of the disturbance energy per unit time and has

thus been characteristically termed the power, as a carryover

from its early application in the fields of communications

and turbulence, where it often had the dimensions of power.

Thus, _(to) has, in turn, been termed the energy or

power spectrum. In this form, the element _(_0) d_ gives

the.contribution to the mean square of harmonic componem._

of u(t) having frequencies between to and _-q-dto.

Now a particularly useful aml simple relation exists for

linear systems between the spectrum of a (listurt)an('e and

the spectrum of tim system response to the disturbance (sec

refs. 8 and 23). This relation is

where

_l,o(to) =q,, (,_) T 2(on) (56)

¢I,o(to) output spectrum

cI,_(to) input spectrum

T(_) amplitude of admittan('e frequ,,n('y-rcsponsc fun,-

tion which is defined as the systom response to

sinusoidal disturbances of various frequem'ies

It is precisely because of this equation that the response

to a continuous sinusoidal gust was deriw,d in the previous

section. The equation indicates that the response at a

given frequency depends only on the input and the system

admittance at that frequency, wlfich is plausible for linear

systems.

A significant l)oint to note here is lhat, dt,sl)ite tlw fa_'t lhat

continuous random disturbances ax't, umh, r cousid4,rat ion. t lw

response equation (56) turns out to bc surprisingly simph,

and easy to apply. This fortunate outcome is m_doul)to[tlv

one of the eonse(lucnces of w,)rking in the frequctwy i)lant,

rather than the time plane. Ncvcrthch,ss, CVClt though tht,
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frequency plane is involved, it is still possible in particular
cases to determine a number of statistical characteristics of

the disturbance or response time histories which are of

interest. For example, the root-mean-square value a, which

may be obtained directly from the spectrum in accordance

with equation (55), provides a useful linear measure of the

disturbance or response intensity. Further, in the particular

case in which the function u(t) has a normal or Gaussian

probability distribution with zero mean, the probability

density is given by

p(y)= _ e-"l_" (57)

Also, S. O. Rice, in reference 24, has derived for the case in

which the disturbance function is completely Gaussian a

number of relations which appear useful in aeronautical

applications and which are particularly significant for fatigue

studies. One of the more important expressions is for the

average number of peak values (maximums) per second that

are above a given value of u. For the larger values of u

(say u>2a), the expression is

where

Np(u)=-_r _ e-"_/_'2 (58a)

There is some indication, as described in reference 6, that

airplane gust loads may tend to have a normal distribution.

Hence, use is made of these equations subsequently in the

application to the flexibility studies.

,as a schematic illustration of the application of equation

(56) to the problem of airplane response to gusts, figure 6 has

been prepared. The top sketch in this figure is the input

spectrum and, in this case, represents the spectrum of at-

mospheric vertical velocity. The frequency argument fi,

which is 27r divided by the wave length L, is introduced in

place of _ because gust disturbances are essentially space

INPUT: choroclerize$ the

_. otmosphere

_" ,4/, meon-squore volue of

gust velocity

FREQUENCYRESPONSE:
chorocterizesthe
oirplone

_x OUTPUT: chorocferizes
the response

a._

Fl(_u_: 6.--Gust-response determination.

,4o, meon-squore value nf

resoonse
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disturbances rather than disturbances in time. The second

sketch T_(_2) represents the amplitude squared of a specified

airplane response, such as the airplane normal acceleration

(eq. (46)) to sinusoidal gusts of unit amplitude and of fre-

ft. (Note that oJ, k, and 12 are related as follows:quency
%

_=Vf2=2Vk.') This function introduces the characteristics
co 2'

of the airplane, the various modes usually showing up as

peaks such as the free-body and fundamental wing-bending

modes illustrated. The output spectrum q,o(_) is obtained

in accordance with equation (56) (this equation applies

whether the argument is _ or fi) as the product of the first

two curves and gives, for example, the spectrum of normal

acceleration or the spectrum of stress, depending upon what

quantity is chosen for tile frequency-response function. This

output spectrum indicates tile extent to which various fre-

quency components are present in tile response, and, further,

it allows for the determination of various statistical proper-

ties of the response time history, such as are given by equa-

tions (55), (57), and (58).

CORRELATION OF CALCULATION AND FLIGHT STUDIES

A number of flight and analytical studies have been made

which deal with the effect of wing flexibility on the structural

response of an airplane in flight through rough air (see refs.

10 to 12 and 25 to 28). The primary results of these studies

are summarized in this section. Specifically, the following

material is covered. The significant results of flight tests

are given. Studies made on the basis of single- or discrete-

gust encounter are then reviewed and the extent of the

correlation with flight-test results is indicated. Finally,

some analytical work on the more realistic condition of

continuous-turbulence encounter is presented and corre-

lation with flight tests shown.

FLEXIBILITY MEASURES

From an analytical point of view, several measures may

be devised to indicate the extent to which flexibility effects

are present in any airplane. Generally these measures

indicate how a particular structural-response quantity (such

as acceleration) for the flexible airplane compares with what

this response would be if the aircraft behaved as a rigid body,

a comparison of Zo" with zo,', for example. For the correla-

tion purposes of the present report, however, the flexibility

measures have been confined largely to the two types used

in flight tests. One of these measures involves a comparison

of the peak incremental accelerations developed at the fuse-

lage with the peak incremental accelerations at the nodal

points of the fundamental mode (see fig. 7), the latter accel-

eration being considered a close approximation to what the

acceleration would be if the airplane were rigid. These two

accelerations are of particular interest because both have

been considered in the deductions of gust intensities from

An F
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Ft_ugt': 7.--Fuselage aqd nodal accelerations.
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measured accelerations; they are different, in general, as are
all accelerations along the wing, because of structural flexi-

bility, particularly wing bending. The other flexibility
measure involves a comparison of the actual incremental

wing stresses with what these stresses would be if the

airplane were rigid. Since it is, of course, not possible to
obtain the rigid-body reference strains in flight, some near-
equivalent strain must be used. The general practice has been

to assume that the rigid-body strains are equal to the strains
that would develop during pull-ups having accelerations

equal to the accelerations that are measured at the nodal

points during the rough-air flights, and this practice has been

followed herein.

REPORT l lS1--NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

FLIGHT STUDIES

In order to establish what the numerical values of these

flexibility measures are in practical cases, flight tests were

made in clear rough air with the three airplanes shown in
figure 8 and designated A, B, and C as shown. References

25 to 28 report some of these flight tests. These airplanes

were chosen because they were available and because they

were judged to be fairly representative of rather stiff,
moderately flexible, and rather flexible airplanes, respectively.
In this flexibility comparison, the factors which are considered

to signify an increase in flexibility effects are higher operating

speeds, lower natural frequencies, and greater mass in the

outboard wing sections. Figure 9 shows the type of accelera-

(a) {b) (cl

(a) Airplane A. (b) Airplane B. (c) Airplane C.

Fmuar- 8.--Three-view sketches of test airplanes.
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RESPONSE TO DISCRETE AND CONTINUOUS GUSTS OF

tion results obtained from these flights. The ordinate refers

to peak incremental acceleration at the fuselage and the

abscissa refers to the peak incremental acceleration at the

nodal points. Although only positive accelerations are shown

in this illustration, a similar picture was obtained for nega-

tive acceleration values. The solid line indicates a 1 to 1

correspondence; whereas the dashed line is a mean line

through the flight points. The slope of this line is the ampli-

fication which results from flexibility; thus, the fuselage

accelerations are 5 percent greater on the average than the

nodal accelerations for airplane A, 20 percent greater for

airplane B, and 28 percent greater for airplane C. It is to

be remarked that the picture is not changed much if given

in terms of strains; that is, if the incremental root strains

for the flexible case are plotted against the strains that would

be obtained if the airplane were rigid, similar amplification

factors are found.

DISCaETE-GUST STUDIES

In an attempt to see whether these amplification factors

could be predicted by discrete-gust studies, some calculations
were made by considering the airplane to fly through single

sine gusts of various lengths. The calculations were made

by the discrete-gust analysis presented previously. The con-

ditions used for speed, load distribution (payload and fuel),

and total weight were similar to those used in the flight tests.

Some of the significant results obtained are shown in figure
I0 (see ref. 12 for additional related results). The ordinate
is the ratio of the incremental root strain for the flexible

airplane to the incremental root strain that is obtained for
the airplane considered rigid. The abscissa is the gust-gradi-

ent distance in chords, as shown in the sketch. The curves

indicate a significant increase in the amplification or response

ratio in going from airplane A to B to C. It may be

remarked that the amount of amplification is, in fact,
related to the aerodynamic damping associated with wing-

bending oscillations. This damping depends largely on the
mass distribution of the airplane and is lower for higher out-

board mass loadings. The curves thus reflect the succes-

sively higher outboard mass loadings of airplane B and
airplane C.

,.'k ,r

airl_one

C

I I I I
0 2 4 6 8

H, chords

IQ,t_'R*; 10.--Straiu amplification for single-gust e,c,),rHer.
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The important point to note about this figure is that the

general level of each curve is in good qualitative agreement

with the amplification values found in flight. Thus, the

1.05 value for airplane A roughly represents the average of

the lower curve, the 1.20 value for airplane B the average

of the middle curve, and the 1.28 value for airplane C the

average of the upper curve. A more direct quantitative

comparison would be available if a weighted average of the

calculated curves could be derived by taking into accoun_

the manner in which the gust-gradient distances are dis-

tributed in the atmosphere. No sound method is available

for doing this, however, and this overall qualitative conlpar-

ison will therefore have to suffice.

Figure 11 shows what is obtained when calculation aml

flight results are correlated in more detail. In this figure,

the strain ratio is plotted against the interval of time for

nodal acceleration to go from the 1 g level to a peak value.

This interval, when expressed in chord lengths, is slightly

different from the gust-gradient distance. The flight vahles

shown were obtained by selecting from the continuous

acceleration records a number of the more predominant

humps that resembled half sine waves and then treating

these humps as though they had been caused by isolated

gusts. The agreement seen between the calculated results

and the flight results is actually surprisingly good when the

complexity of the problem and the fact that the calculations

are for a highly simplified version of the actual situation are

considered. In contrast to the well-behaved single gusts

assumed in the calculations, the gusts encountered in flight

are not isolated but are repeated and are higtdy irregular in

shape. These factors may well account for the higher ampli-

fications found in flight, especially in the range of higher

values of time to peak acceleration; in this range it is to be

expected that the amplification effects associated with the

higher frequency components of the irregular gust shapes

are superposed on the amplification effects of the predomi-

nant gust length to lead to the higher effective values

observed.

Ae!

I=liqht

..-Colculated

i I

0 .2 .4 .6

Time to peak occeterot,on, sec

F_;urE l l.--|_mgh-_ir _traiu amplificatio, fl,r airl)lam, C.
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F]_om the results thus far presented, it nlay be concluded

that a reasonably fair picture of flexibility effects n_ay be

obtained with tile discrete-gust appl,oa('h. It is found to

give good overall qualitative agree.-nent with flight-test
results and can be used to detcr:'l:ine how one airplane com-

pares with another in respect to the relative extent to which

these effects are present. Detailed quantitati_'e correlation

is not feasible, however, since the degree of resolution per-

mitted by the approach is limited. This is, of course, to be

expected in view of the li_uitcd and t,nrealistic description

of lm'buh, ncc used.

CONTINUOUS-TURBULENCE STITDII_

The procedure given in the section entitled "Treatment of

Random Continuous Turbulence" was applied in order to

see what it would yield in the way of flexibility effects for

the three airplanes used in the rough-air flight tests. The

spectrum chosen for atmospheric vertical velocity was that

given in reference 6. Bending stress at a station near the

root of the wing was chosen as the response variable, and

evaluation was made for flight conditions representative of

those used in the flight tests. These conditions arc indicated

in table 4, together with the physical constants and basic

parametelu that apply. (It is remarked that the use of the

tlleoretical lift-curve-slope value of 2w in place of more rep-

resentative values has no serious consequence herein since

the final results to be presented are in a ratio form which is

relatively insensitive to the lift-curve slope used.) Figure 12

shows the transfer functions that were obtained by means Of

equations (48) and (51); for this evaluation the flutter co-

efficients for two-dimensional incompressible flow and an

amplitude of tile sinusoidal input gust of I ft/see were used.

The solid curve is for tile flexible airplane and the dashed

curve, for the airplane considered rigid. These curves show

60 x 104

40

_ - Flexible

20-

Rig

] _ (o)

0 J

_'rec]uency,
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quite clearly tile differe:lt bias that each airplane has to_al'd

various frequency components of the atmosphere. Tht, Frst

hump is associated with vertical translation of the airplant'

and the seco:l(I hump, with wing bending. Tile spe('tra for

bending-stress response, obtained by multiplying tht,

frequency-response curves by the input spectrum of (.ours_'
show that the curve for the flexible case overshoots the <.urv<'

for the rigid case by an amount consistent with the frequen(')-

response curves. This ovct_hoot is a reflection in tlt_,

frequency pla:le of the characteristics of the tl'a:lsie'lt-

response curves showli in figure 10. The ttrea of the ow'r-
shoot is a direct measure of the amplification in m<'atl-s(iutlr_'

bending stress that results from wing flexibility.

TABLE 4.--All(PLANE I,OAI.)ING, PHYSI('AI+ ('ONS'F.\N'I_+

AND BASIC PARA.MI':TEI_S

._.irl)Jane .k .kirl)lant, B Airilt_m_, C

Fu_,|age IoL_(I................ Crt,'_"on y 12 fl ('*'t"_ i_vllv
Fuel load ...................... " [_ full 12 full (uil
I! ", Ib ............................. 2l, 01:_1 :gl, +70 11)5. _,l

I', mph ..................... 1_5 2,_.% 2,'_)
2¢. sq ft ................... !1_7 _711 i 7:¢!t
h, ill ......................... l. 14() I+ I:._l + 7(HI

_..li_. \::- :_- _:: ............. _:o ,,_ =_,.;
.t ............................. '_ ]+l II+;

¢, shlffl+lell ft ............. O+ IMP+rill (). (iP_ (i lll2_t_

_u+.................................... 2_, 4 46, _ ,_l_. :¢

h ........................................ I). 72_) O. :]9'.Z O+ :1t+2
rl ......................................... It. 189 O. 2"2.5 11 I_)

rt ......................................... 0._ O. t43 tL l:|l

Wing ._tation, in. ° ........................ _ Mi e_l
ri ........................................ ; 0. 375 0. 457 (I 417

W ..................................... i 21._ 15.94 :_):m
0. 9l_l 2.._ :_ +_:|

d ............................. 7.11.5 4.418 I t ,_-'l

............................. --0. 1:47 --0. ¢;77 --+I %+I!+_......................... i}. 7_ I l. ;'_2 2. Y'2

M,¢, ft _ ........... 7. s,_, a. ++m_ ;.'.'. _i_.i

°*z ill. -+ ......... li. lMlla+ll 11. Ill|M:{ 41.l_ll+lll 2

7

*.%11 v il'l '+- list:'d below the witlg st:itio'l_ _ll,l_ly to tile stlltiOl_ indic xtt'd.
": here ¢I++ l:_t_'+ ,li'lt'lrl¢_ fro;ll neutral axis tO exti'_,nl¢_ fiber.

\

\\

___ _ , (b)_

0 ,I 0
Frequency, _ F'requenc¥, _,

(c)

_+ll_'l;ig(' II_l,l ( "li'X+ +_I11) I 2 rllll
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In order to obtain an amplification or flexibility measure

more directly comparable to the values obtained from the

flight-test results, the following procedure was used. Equa-

tions (58) were used to give curves of tile type shown ill

sketch 1 where the ordinate .\'p refers to the number of

Stress

SKETCH 1.

stress peaks that occur per second above a given stress level

represented by the abscissa. As can be seen, one curve

applies to the flexible airplane, whereas the other is for the

airplane considered rigid. A convenient measure of tile

magnitude of flexibility effects can be found by taking the
ratio of the stress for the flexible case to the stress for tile

rigid case at a given value of Np (for example, the ratio of

the stress at point 1 to the stress at point 2). In general,

this ratio varies with stress level; it is highest at tile lower

stresses and with increasing stress decreases to a constant

value equal to the ratio of the root-mean-square stress for
the flexible airplane to the root-mean-square stress for the

rigid airplane. For correlation with flight results, this ratio
was determined for each of the three airplanes. The stress

level chosen was in the rang,, of the higher flight-stress vahws ;

specifically, it was taken equal to twice the mean-square

stress that developed.

Figure 13 shows a correlation of some of the results ob-

tained by tile harmonic-analysis approach with flight results.

Tilt, ordinate is the previously used strain ratio, that is, the
ratio of the peak incremental root hen(ling strain for tim

flexible airplanc to the peak incremental root bending strain

for the aircraft consi(lered rigid. The ahseissa is the ratio

obtained from the harmonic-analysis theory, as exl)lained in

the preceding paragraph. The three circles arc the results

for the three airplanes. As a matter of added interest, a

singh, arr,.leration point, which was the only one computed
and whirh applied to airplane B, has been inserted in the

plot as though the roonlinatrs involved tit,' rati() of fusrh_e

to nodal areeh!ration. Tlw good ro,'relation shown by lhis

plot is, to say the h,ast, vrry gratifying; it shows tirol good

,.orr,.latioumay It(.obtain,.d l),,lw,.,.n,.ah.ulalionsaml flight

results an(I, nmt'rover, imli,'att'sthat th,'l,a,'mo,fi(.-a:,alysis

ai)llroarh is a suitabh, m,,lhod to us,'.

1.3

1.2

IJ

A,rplone A o /

I.o /

.9 /I ,

o .9 Lo {I

\ A*e," lt/we o

12 15

l"t(;ua_ 13.--St.rain a,nl)lification for CUlllinlLOll_;lllrl)ltlcnLt'l'.

CONCLUDING REMARKS

The derivation presented herein is intended to provide a

convenient engineering method for taking into account wing

bending flexibility in calculating the response of an airplane

to either discrete or continuous-sinusoidal gusts. The

method is believed to be well suited for making tren, l stu_lir_

which evaluate, for example, the effect on response of su,h

factors as mass distribution, speed, and altitude. It is m)t

intended to apply for speeds near the flutter speed or for

airplanes which have poor longitudinal damping characteris-

tics; for these cases an extension to int'[ude wing to,'sio,l anti

airplane pitch would be desirable.

As regards the calculations and flight studies tha! wrr,,

made for three airplanes to determine the manner in which

gust loads are magnified by wing flexibility, the followin_

remarks may be made. These studies iudi('ate that an ap-

proach based upon single-gust en('ounter can b,' usvd t,)

evaluate the way in which one airplam, romparrs with

another in respect to the average of these flexibility ,,fft,,'ts.

This discrete-gust approa,'h also shows ove,'all qualitative,

,.orrelation with flight results; howrvr,', it ,tots not pt,rmit

detailed ,'esolution of the flexibility effr,.ls, and he,w(, ,lire_'t

quantitative eo,','elation is not feasible. A mo,'e appropriatv

approarh apl)ea,'s to be one whi,.h eonsi,h, rs tlw (.,)nlinu,)u,,

random nature of atmospheric turbulem'e and whi,.h is basrd

ou generalized harmonie_ analysis. Not only dots it llermi,

airplanes to be compare,[ with one anotlwr in dr'tail but il

also provides good quantitativr eorrelatiou with flight

results. It therefore apl)cars that, through use of this

(,ontinuous-_urbulence approarh, a suitabh, tin, arts is ,dt'ordrd

for dcterndning the ,uagnitt,,h,sof fh,xiltililycffe,'ts. 3lo,',,-

OV,'I'. ,nan)" useful ratuilieations, such as al)l)lic'ali,+n re) f.,tigtw

st,,lirs, an, providt,d as wrll.

L, ANt;I,I,IY AI.IRONAU'rI('AI. I,ABOlt.Vr¢)lt',',

.N,'A'I'IONA I, ADVISOII'f (_O.%IM ITTI.II.I Flail ._.. I.:R¢) N \ ["rl¢ '.¢,.

I,_XO, LEV FlEEr), V._., .Ibtrch _,. 1.0.;_.



APPENDIX A

DERIVATION OF EQUATION RELATING DISPLACEMENT TO PREYIOUS SUCCESSIYE YALUES OF ACCELERATION

In this appendix, a derivation is given of equation (31)

which gives the value of displacement in terms of successive

past-history values of acceleration. Suppose that the sec-

ond derivative (acceleration) of a function is approximated

by a succession of straight-line segments as shown in sketch 2

2'"

_z_ s

SKZTCX 2.

where the segments cover equal intervals t of the abscissa s

and the initial condition that zo"=0 is assumed to apply.

If a dummy origin is now considered at the station m- 1,

the segment between stations m-1 and m may be repre-

sented by the equation
ZVtm--Zttm_ 1

ZVt_Zvvm_l- _ 8

Two successive integrations give the relations for z'. and

z., as follows:

Zt Vm - ZP tm- 1 82 2F ZVm_ 1
z'=z",,,_t8"+ 2e

Vt 82-- Zrvm-- Zvvm--I

z=z .-t _t _; s% z'._,8+ z._L

where the constants of integration z'.-t and z.-i (initial

conditions for the interval) have been introduced. If s is

set equal to t in these two equations, the following equations

result:

v

z ,,,=_ (z",,,+z"_,_O+z'.-, (A1)

{2 e2

_m=-_ Z''m+- _ Z''m_I+ Z'm_IE+ Zm_ 1
(A2)

18

From these two equations the values of z'= and z. at any

time interval may be given in terms of the second derivative

at all previous time intervals. For example, with initial

conditions of z"o=z'o=O, equation (A1) becomes for rn= 1

and for m=2

t E

Z 1_ ZVtl

t C

z _-_ (z"_+z",)+z',

(A3)

Combining this equation and equation (A3) results in the
relation

/ ,, 1
Z',=, _kZ z"_--_ Z"2)

This process may be carried through for each of the time

stations to yield the following general equation for z'.:

(z"_+ z"_+ z"3+ ,, 1ZP,_ _ e ... + z ,,_,+_ z",./ (A4)
1

which, of course, is the trapezoidal approximation of the

area under the z"-curve. Equation (A2) for z. may be

treated similarly, and it is found that the general equation

for z. may be written

z,_=t_[(m_l)z,, +(m_2)z,,2 + .... 1
7

... +2z .,-2+z .-_+g z"_,A

(A,_)

This equation thus gives the displacement at any time sta-

tion in terms of the accelerations at all previous time

stations.

It may be noted that, if higher-order segments (parabolic

or cubic) had been used instead of straight-line segments to

approximate the second derivative, equations similar in

form to equations (A4) and (AS) would also result. For

most practical purposes, however, the accuracy of equation

(AS) is sufficiently good as long as the interval e is chosen so

that the straight-line segments roughly approximate the

second derivative.



APPENDIX B

SUMMARY OF CALCULATION PROCEDURE FOR DETERMINING THE RESPONSE TO DISCRETE GUSTS

As a convenience, a summary of the basic steps necessary

for calculating the response of an airplane to a discrete gust

is given in this appendix.

For accelerations and displacements:
(1) With the use of the fundamental mode, wing plan

form, and mass distribution, calculate the quantities #o, t,],

_,, rl, and r2 as given by equations (18).

(2) Choose the time interval E. A convenient rule of

1
thumb is e_-_, but for most cases _=1 should give satis-

factory results.

(3) Determine values of the unsteady-lift function 0-----1 -

at successive multiple intervals of _. (See fig. 1.) Also

determine corresponding values of the gust-force integral

f(s), equation (27b). As an aid, curves forf(s) are presented

in figure 1 for the sharp-edge gust and in figure 14 for various-

length sine gusts, sine s gusts, and triangular gusts. (The

curves in fig. 1 have been obtained from eqs. (9) and (10).

These approximations, although rather accurate for the

lower values of s, are noted to cross; actually, they should

not cross and are known to have the same asymptotic

approach to unity.)

(4) From the following definitions:

Am=2_,,-t (m > 1)

B,=r,_o

B_,-_2rle4__l (m_l)

e__2 r_

C,-rl

c.=(m-1) ,,x2+e (m>
r_ \rt /

lO
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set up tile following matri('es:
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$, half-chords

(b) II= 5 chords.

|"m t'RE 14.--('ont inn(,d.

Sine gust
Sine2gust

Triangular gust

(bl -

20 25 _0

(_

( '_ ( '_

( 'l

( " (',

('3 ('.,
[(];

Then, ('ah'ulah, the matrix

[D}= -] [A} [CI+IB]

(5) Solve fi)r the values of t_ (whi,.h equals :,") from
(,quation (3:_) by the method outlim,d afh,r (,(tuntion 13:{).

(See (,q. (34).) The values of -, and a (which _,qua[s z,,"!

('an then be (.ah'ulah,d from equations (31) and (32).

For bending moment:

(6) In or(l(,r to eOlnl)ute bending moment, dt, lt,rmim, r_.

l'_l)t fl.[Ii[ _1 ItS given by (,quations (24), whtH'(' "_1.,o. -]/,,q..]I,_r
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Sine2 gust

Triongular gust

2O

21

and Mc I ill these equations depend on the 1)articuhu" wing

station being considered anti are given by equations (21).

(7) Determine bending moment by use of equations (23)

with the values of response already established. This

equation may he applied directly to any desired time value.

.Maximum bending moment usually occurs very close to the

time when "_ is a maximum.
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